34 research outputs found

    A comparison of the ECMWF forecast model with observations over the annual cycle at SHEBA

    Get PDF
    A central objective of the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment was to provide a comprehensive observational test for single-column models of the atmosphere-sea ice-ocean system over the Arctic Ocean. For single-column modeling, one must specify the time-varying tendencies due to horizontal and vertical advection of air through the column. Due to the difficulty of directly measuring these tendencies, it was decided for SHEBA to obtain them from short-range forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) global forecast model, into which SHEBA rawinsonde and surface synoptic observations were routinely assimilated. The quality of these forecasts directly affects the reliability of the derived advective tendencies. In addition, the ECMWF-forecast thermodynamic and cloud fields, and radiative and turbulent fluxes present an illuminating comparison of the SHEBA observations with a state-of-the-art global numerical model. The authors compare SHEBA soundings, cloud and boundary layer observations with the ECMWF model output throughout the SHEBA year. They find that above the boundary layer, the model was faithful to the SHEBA rawinsonde observations and maintained a proper long-term balance between advective and nonadvective tendencies of heat and moisture. This lends credence to use of the ECMWF-predicted advective tendencies for single-column modeling studies. The model-derived cloud properties and precipitation (which were not assimilated from observations) are compared with cloud radar, lidar, microwave radiometer, surface turbulent and radiative measurements, and basic surface meteorology. The model s slab sea-ice model led to large surface temperature errors and insufficient synoptic variability of temperature. The overall height distribution of cloud was fairly well simulated (though somewhat overestimated) in all seasons, as was precipitation. However, the model clouds typically had a much higher ratio of cloud ice to cloud water than suggested by lidar depolarization measurements, and a smaller optical depth, leading to monthly biases of up to 50 W m^(-2) in the monthly surface downwelling longwave and shortwave radiation. Further biases in net radiation were due to the inaccurate model assumption of constant surface albedo. Observed turbulent sensible and latent heat fluxes tended to be small throughout SHEBA. During high-wind periods during the winter, the ECMWF model predicted sustained downward heat fluxes of up to 60 W m^(-2), much higher than observed. A detailed comparison suggests that this error was due to both inadequate resolution of the 31-level model and a deficient parameterization of sea-ice thermodynamics

    The Appearance and Disappearance of Ship Tracks on Large Spatial Scales

    Get PDF
    The 1-km advanced very high resolution radiometer observations from the morning, NOAA-12, and afternoon, NOAA-11, satellite passes over the coast of California during June 1994 are used to determine the altitudes, visible optical depths, and cloud droplet effective radii for low-level clouds. Comparisons are made between the properties of clouds within 50 km of ship tracks and those farther than 200 km from the tracks in order to deduce the conditions that are conducive to the appearance of ship tracks in satellite images. The results indicate that the low-level clouds must be sufficiently close to the surface for ship tracks to form. Ship tracks rarely appear in low-level clouds having altitudes greater than 1 km. The distributions of visible optical depths and cloud droplet effective radii for ambient clouds in which ship tracks are embedded are the same as those for clouds without ship tracks. Cloud droplet sizes and liquid water paths for low-level clouds do not constrain the appearance of ship tracks in the imagery. The sensitivity of ship tracks to cloud altitude appears to explain why the majority of ship tracks observed from satellites off the coast of California are found south of 358N. A small rise in the height of low-level clouds appears to explain why numerous ship tracks appeared on one day in a particular region but disappeared on the next, even though the altitudes of the low-level clouds were generally less than 1 km and the cloud cover was the same for both days. In addition, ship tracks are frequent when lowlevel clouds at altitudes below 1 km are extensive and completely cover large areas. The frequency of imagery pixels overcast by clouds with altitudes below 1 km is greater in the morning than in the afternoon and explains why more ship tracks are observed in the morning than in the afternoon. If the occurrence of ship tracks in satellite imagery data depends on the coupling of the clouds to the underlying boundary layer, then cloud-top altitude and the area of complete cloud cover by low-level clouds may be useful indices for this coupling.This work was supported in part by the Office of Naval Research and by the National Science Foundation through the Center for Clouds, Chemistry and Climate at the Scripps Institution of Oceanography, an NSF Science and Technology Center

    Investigating the topology of interacting networks - Theory and application to coupled climate subnetworks

    Full text link
    Network theory provides various tools for investigating the structural or functional topology of many complex systems found in nature, technology and society. Nevertheless, it has recently been realised that a considerable number of systems of interest should be treated, more appropriately, as interacting networks or networks of networks. Here we introduce a novel graph-theoretical framework for studying the interaction structure between subnetworks embedded within a complex network of networks. This framework allows us to quantify the structural role of single vertices or whole subnetworks with respect to the interaction of a pair of subnetworks on local, mesoscopic and global topological scales. Climate networks have recently been shown to be a powerful tool for the analysis of climatological data. Applying the general framework for studying interacting networks, we introduce coupled climate subnetworks to represent and investigate the topology of statistical relationships between the fields of distinct climatological variables. Using coupled climate subnetworks to investigate the terrestrial atmosphere's three-dimensional geopotential height field uncovers known as well as interesting novel features of the atmosphere's vertical stratification and general circulation. Specifically, the new measure "cross-betweenness" identifies regions which are particularly important for mediating vertical wind field interactions. The promising results obtained by following the coupled climate subnetwork approach present a first step towards an improved understanding of the Earth system and its complex interacting components from a network perspective

    Asymmetric correlation matrices: an analysis of financial data

    Full text link
    We analyze the spectral properties of correlation matrices between distinct statistical systems. Such matrices are intrinsically non symmetric, and lend themselves to extend the spectral analyses usually performed on standard Pearson correlation matrices to the realm of complex eigenvalues. We employ some recent random matrix theory results on the average eigenvalue density of this type of matrices to distinguish between noise and non trivial correlation structures, and we focus on financial data as a case study. Namely, we employ daily prices of stocks belonging to the American and British stock exchanges, and look for the emergence of correlations between two such markets in the eigenvalue spectrum of their non symmetric correlation matrix. We find several non trivial results, also when considering time-lagged correlations over short lags, and we corroborate our findings by additionally studying the asymmetric correlation matrix of the principal components of our datasets.Comment: Revised version; 11 pages, 13 figure

    New perspectives in turbulent Rayleigh-Bénard convection

    Full text link
    corecore